pKa Determination of Benzhydrylpiperazine
 Antihistamines in Aqueous and Aqueous Methanol Solutions

DAVID W. NEWTON *x, WALLACE J. MURRAY ${ }^{\ddagger}$, and MICHAEL W. LOVELL ${ }^{\text {s }}$

Received December 14, 1981, from the *Department of Pharmaceutics, College of Pharmacy, \ddagger Department of Biomedicinal Chemistry, University of Nebraska Medical Center, Omaha, NE 68105 and the ${ }^{\S}$ Department of Pharmaceutics, College of Pharmacy, J. Hillis Miller Health Center, University of Florida, Gainesville, FL 32610. Accepted for publication February 3, 1982.

Abstract

The pKa_{1} and pKa_{2} values of three benzhydrylpiperazine antihistamines, cyclizine (I), chlorcyclizine (II), and hydroxyzine (III), were determined at $24.5 \pm 0.5^{\circ}$ by potentiometric titration in aqueous solution to be 2.16 ± 0.02 and $8.05 \pm 0.03,2.12 \pm 0.04$ and 7.65 ± 0.04, and 1.96 ± 0.05 and 7.40 ± 0.03, respectively. The pKa_{2} values were also determined by titration in seven aqueous methanol solutions in the range of $11.5-52.9 \%(w / w)$ methanol. The apparent dissociation constants of I-III in the aqueous methanol solutions, $p_{s} \mathrm{Ka}_{2}$, were plotted according to two linear regression equations from which the values in water, $\mathrm{p}_{\omega} \mathrm{Ka}_{2}$, were extrapolated. The plotted variables were $\mathrm{p}_{s} \mathrm{Ka}_{2}$ versus methanol concentration ($\% \mathrm{w} / \mathrm{w}$) and $\mathbf{p}_{s} \mathrm{Ka}_{2}+\log$ (water concentration, M) versus $1000 / \epsilon$, where ϵ is the dielectric constant of the aqueous methanol solution. The maximum difference between $\mathrm{pK} \mathrm{a}_{2}$ and $\mathrm{p}_{\omega} \mathrm{Ka}_{2}$ was observed in the case of II where $\mathrm{p}_{\omega} \mathrm{Ka}_{2}$ was 5.23% higher. Statistical analysis of the linear regression data obtained from the plots showed that slightly better accuracy ($p<0.13$) and correlation ($p<0.16$) were obtained, but the precision was essentially equal with both methods. The observed ratio of $K_{a 1} / K_{a 2}$ in I-III, $2.75 \times 10^{5}-7.76 \times 10^{5}$, was attributed to solvent- and space-mediated field effects and electrostatic induction between nitrogen atoms in the piperazine ring.

Keyphrases - Benzhydrylpiperazines-antihistamines, pKa determination in aqueous and aqueous methanol solutions \square DissociationpKa determination of benzhydrylpiperazine antihistamines in aqueous and aqueous methanol solutions antihistamines-benzhydrylpiperazines, pKa determination in aqueous and aqueous methanol solutions

Five benzhydrylpiperazine antihistamines are currently marketed in the U.S.: cyclizine (I), chlorcyclizine (II), hydroxyzine (III), meclizine (IV), and buclizine (V).

Although some pKa ${ }^{1}$ data for I (1, 2), II (1-3), III (4-7), and IV $(6,8)$ have been reported (Table I), much of it is based on titrations in 30-50\% aqueous alcohols and chlo-

[^0]roform-aqueous buffer partition experiments. More recent values of pKa_{1} determined potentiometrically for III and IV (6) and spectrophotometrically for III (7) appear to have been conducted more precisely in aqueous solution.

The benzhydrylpiperazine antihistamines are popularly used as prescription and nonprescription dosage forms for their antiemetic, antipruritic, and sedative effects. It was the purpose of this investigation to determine the pKa_{1} and pKa_{2} values of these drugs for application to various pharmaceutical situations and to evaluate the accuracy of two methods for extrapolating an aqueous pKa estimate from apparent pK a values obtained in aqueous methanol solutions.

BACKGROUND

The low aqueous solubility of nonprotonated amine bases or nondissociated organic acids appears to be the consensus nemesis to determining pKa values of these substances by potentiometric titration. Even the lower limit of $5 \times 10^{-4} M$ for potentiometry (9) is often not achievable. The use of mixed solvent systems, e.g., an alcohol-water and dioxanewater, has been the method most commonly used to surmount this solubility problem. There is little or no disadvantage to this practice if the purpose merely is to compare the relative acidities or basicities of a series of chemical analogs. If, however, the objective is to make judgments pertaining to the aqueous environments of in vivo phenomena, the discrepancy between pKa values determined in aqueous and those in aqueous organic solvent solutions could be consequential.

Estimates of aqueous pKa values for inadequately soluble substances have usually been obtained by plots of the apparent pKa values in aqueous organic solvents versus solvent concentration (e.g., \% w/w) (10 , 11):

$$
\begin{equation*}
p_{s} \mathrm{Ka}^{\prime}=[\text { solvent }]+\mathbf{p}_{\omega} \mathrm{Ka} \tag{Eq.1}
\end{equation*}
$$

where $\mathrm{p}_{s} \mathrm{Ka}^{\prime}$ is the apparent dissociation constant in the aqueous organic solvent system, [solvent] is the organic concentration ($\% \mathrm{w} / \mathrm{w}$), and $\mathrm{p}_{\omega} \mathrm{Ka}$ is the value of $p_{s} \mathrm{Ka}^{\prime}$ extrapolated to $0 \%(\mathrm{w} / \mathrm{w})$ organic solvent or 100% (w / w) water. This method was used extensively in pharmaceutical studies during the 1950s and early 1960s (1-3, 12-15). The errors inherent in pKa estimates with this method have been addressed elsewhere (16-18). In 1959, two authors independently proposed a relationship that they rationalized should provide a more accurate estimate of aqueous pKa values

Table 1-Acid Dissociation Constant (pKa) Values Reported for Some Benzhydrylpiperazine Antihistamine Drugs

Drug	pKa_{1}	pKa_{2}
Cyclizine (I)	2.54^{a}	$7.92^{a}, 8.16^{b}$
Chlorcyclizine (II)	$2.44^{a}, 2.43^{c}$	$7.78^{a}, 8.15^{b}, 7.81^{c}$
Hydroxyzine (III)	$2.13^{d}, 1.83^{e}, 2.0^{f}$	7.9^{g}
Meclizine (IV)	$3.1^{h}, 2.05^{i}$	6.2^{h}

${ }^{a}$ In 50% methanol (Ref. 1). ${ }^{b}$ In $30-50 \%$ alcohol (Ref. 2). ${ }^{c} \operatorname{In} 20-80 \%$ alcohol (Ref. 3). ${ }^{d}$ Via partitioning between $0.5 \mathrm{MH}_{3} \mathrm{PO}_{4}$ and chloroform (Ref. 4). e In aqueous solution at an ionic strength <0.001 (Ref.6). ${ }^{\text {I }}$ Spectrophotometrically in aqueous solution (Ref. 7). ${ }^{g}$ In unspecified aqueous methanol solutions (Ref. 5). ${ }^{\text {a }}$ Via partitioning between $0.5 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ and chloroform (Ref. 8). ${ }^{i}$ In aqueous solution at an ionic strength of 0.005 (Ref. 6).
obtained by extrapolation of $p_{s} \mathrm{Ka}^{\prime}$ values in aqueous organic solvent mixtures (19, 20):

$$
\begin{equation*}
\mathrm{p}_{s} \mathrm{Ka}^{\prime}+\log \left[\mathrm{H}_{2} \mathrm{O}\right]=\frac{1}{\epsilon}\left(e^{2} / 2.303 a k T\right)-\log B_{H} \tag{Eq.2}
\end{equation*}
$$

where $\mathrm{p}_{s} \mathrm{Ka}^{\prime}$ is the apparent pKa value in aqueous organic solvent mixtures uncorrected for electrode response, $\left[\mathrm{H}_{2} \mathrm{O}\right]$ is the water concentration (M), ϵ is the dielectric constant, e is the ionic charge, a is the mean cat-ion-anion ionic diameter, k is the Boltzmann constant, T is the absolute temperature, and B_{H} is a constant based on the assumption that $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] \gg [solvent H^{+}]. The values of $\mathrm{p}_{s} \mathrm{Ka}^{\prime}$ are corrected by subtracting a constant, δ, which takes into account the variability of glass electrode response in aqueous methanol solutions. This gives the actual pKa value in the mixed solvent system, $\mathrm{p}_{\mathrm{s}} \mathrm{Ka}(21,22)$:

$$
\begin{equation*}
\mathrm{p}_{s} \mathrm{Ka}=\mathrm{p}_{s} \mathrm{Ka}^{\prime}-\delta \tag{Eq.3}
\end{equation*}
$$

Thereafter, a plot of $p_{s} \mathrm{Ka}+\log \left[\mathrm{H}_{2} \mathrm{O}\right]$ versus $1 / \epsilon$ that is essentially linear may be extrapolated to obtain the ordinate intercept value for $\mathrm{p}_{\omega} \mathrm{Ka}$, the estimated aqueous pKa when $\log \left[\mathrm{H}_{2} \mathrm{O}\right]$ is 1.74 and $1 / \epsilon$ is $0.01273{ }^{2}$. The linearity of the plots may decrease appreciably when $1 / \epsilon>0.02$ (e.g., $\geq 70 \% \mathrm{w} / \mathrm{w}$ methanol). This corresponds to the value of $\epsilon \simeq 50$, below which ionic dissociation begins to diminish with a concomitant increase in ion-pair association and perturbation of the equilibrium between the neutral and ionic species (18,21).

The original solubility method for determining pKa values (23) has been applied to determining pKa values of acidic, basic, and amphoteric substances with low aqueous solubility $(9,24-26)$. This method has the advantage of providing thermodynamic pKa estimates when the ionic strength of the samples is low (e.g., <0.0005). Its disadvantages include the failure to achieve equilibrium conditions and separate emulsified or suspended neutral species from the saturated salt solutions in equilibrium with them. Potential errors in solubility estimates resulting from supersaturation of ionic and/or neutral species and the instability of some compounds also jeopardize the accuracy of this method. Another method involving a single pKa titration in an aqueous organic solvent mixture has been proposed, but it was judged by its author to be generally inapplicable to the estimation of $p_{\omega} \mathrm{Ka}$ values (27).

It is reasonable to expect that the widespread use of organic solventwater mixtures for pKa titrations of substances with intrinsic water solubilities of $<0.0005 \mathrm{M}$ will continue. This is because of historical precedents and the expedient manipulative techniques that can be accomplished using aqueous organic solutions.

EXPERIMENTAL

Materials-Cyclizine hydrochloride (I) ${ }^{3}$, chlorcyclizine hydrochloride (II) ${ }^{4}$, hydroxyzine dihydrochloride (III) ${ }^{5}$, meclizine dihydrochloride (IV) ${ }^{6}$, and buclizine dihydrochloride (V$)^{7}$ were used as received. Methanol, hydrochloric acid, and potassium hydroxide solutions were ACS analytical reagent grade, and freshly boiled water with a resistivity $\geq 10^{7} \mathrm{ohm}$ cm were used in the solvent systems and titrants.
Procedures-Titrations were conducted in a 25 - or $50-\mathrm{ml}$ multinecked glass flask fitted with a thermometer calibrated in 0.1° units. Agitation was provided by a polytef-coated magnetic stirring bar, and pH values were measured with a digital pH meter ${ }^{8}$ equipped with a combination glass electrode ${ }^{9}$. The ambient temperature of the systems varied from 24.0 to 25.0° with an average value of 24.5°. Titrant increments were added from a pipet ${ }^{10}$ in $0.25-\mathrm{ml}$ portions.
The $\mathrm{p}_{\mathrm{s}} \mathrm{Ka}^{\prime}{ }_{2}$ values of 0.002 M I-III were determined in seven aqueous methanol solutions in the range of $11.5-52.9 \%$ (\mathbf{w} / w) with a titrant of 0.020 N KOH prepared in aqueous methanol that contained to within 0.1% (w / w) the same methanol concentration as the solutions of I-III. Values of $\mathrm{pKa}^{\prime}{ }_{2}$, the apparent constant in aqueous solution, were determined in aqueous 0.001 MI and III titrated with aqueous 0.010 N KOH and in aqueous 0.0005 M II titrated with aqueous 0.005 NKOH . The $\mathrm{pKa}^{\prime}{ }_{1}$ values of I and II were obtained from titrations of 0.015 M aqueous so-

[^1]lutions with aqueous 0.030 N HCl . The $\mathrm{pKa}^{\prime}{ }_{1}$ of III was determined by titrating aqueous 0.015 M III with aqueous 0.030 N KOH .

Activity Corrections-Values of $\mathrm{p}_{s} \mathrm{~K}_{\mathrm{a}}{ }^{\prime}$ obtained from titrations of I-III in aqueous methanol solutions were corrected to $\mathrm{p}_{s} \mathrm{Ka}$ values with Eq. 2 using δ values reported elsewhere (22). The $\mathrm{pKa}_{2}{ }_{2}$ values of I-III were corrected for activity effects of the K_{2} equilibria in Scheme I^{11} (16, 18, 28-30):

$$
\begin{gather*}
\mathrm{HB}^{+}+\mathrm{OH}^{-} \stackrel{K_{2}}{=} \mathrm{B}+\mathrm{H}_{2} \mathrm{O} \\
\text { Scheme } I \\
\mathrm{pKa}_{2}=\mathrm{pKa}_{2}-\frac{0.51 \sqrt{I}}{1+1.6 \sqrt{I}} \tag{Eq.4}
\end{gather*}
$$

where I is the ionic strength of the solution, and the entire negative term estimates the logarithm of the activity coefficient, $-\log \gamma_{i}$. A similar activity correction was used for the K_{1} equilibria shown in Schemes II and III ${ }^{11}$ (28):

$$
\begin{gather*}
\mathrm{H}_{2} \mathrm{~B}^{+2}+\mathrm{OH}^{-} \stackrel{K_{1}}{\rightleftharpoons} \mathrm{HB}^{+}+\mathrm{H}_{2} \mathrm{O} \\
\text { Scheme } I I \\
\mathrm{HB}^{+}+\mathrm{H}_{3} \mathrm{O}^{+} \stackrel{K_{2}}{\rightleftharpoons} \mathrm{H}_{2} \mathrm{~B}^{+2}+\mathrm{H}_{2} \mathrm{O} \\
\text { Scheme } I I I \\
\mathrm{pKa}_{1}=\mathrm{pKa}_{1}=\frac{1.5345 \sqrt{I}}{1+1.6 \sqrt{I}} \tag{Eq.5}
\end{gather*}
$$

RESULTS AND DISCUSSION

The values of pKa_{1} for I-III were determined to be $2.16 \pm 0.02,2.12$ ± 0.04, and 1.96 ± 0.05, respectively. The corresponding values of $\mathrm{pKa}{ }_{2}$ are $8.05 \pm 0.03,7.65 \pm 0.04$, and 7.40 ± 0.03^{12}.
The plots of the data for $\mathrm{p}_{s} \mathrm{Ka}_{2}$ versus methanol ($\% \mathrm{w} / \mathrm{w}$) are shown in Fig. 1 and that for $\mathrm{p}_{s} \mathrm{Ka}_{2}+\log \left[\mathrm{H}_{2} \mathrm{O}\right]$ versus $1000 / \mathrm{\epsilon}$ in Fig. 2 for I-III. Least-squares regression lines were plotted for all I-III data sets to permit comparison of the accuracy and precision of $\mathrm{p}_{\omega} \mathrm{Ka}_{2}$ extrapolations derived from each set of ordinate and abscissa coordinates. The ϵ values in Fig. 2 were calculated for each aqueous methanol solution from a linear regression equation derived from data for $10-60 \%(\mathrm{w} / \mathrm{w})$ methanol (31):

$$
\begin{equation*}
\epsilon=-0.4523 C+78.9307 \tag{Eq.6}
\end{equation*}
$$

where C is the methanol concentration $(\% \mathrm{w} / \mathrm{w})^{13}$. The linear regression data for the plots in Figs. 1 and 2 are summarized in Tables II and III, respectively.
A comparison of R values for I-III (Tables II and III) shows that, based on the Student's t test (32), there was a better linear correlation of the $\mathrm{p}_{s} \mathrm{Ka}_{2}$ titration data plotted according to Eq. $2(p<0.16$). There was, however, essentially no difference ($p<0.001$) in the precision of the plots of Eqs. 1 and 2 based on a comparison of $S_{y, x}$ values (Tables II and III). The accuracy of $\mathbf{p}_{\omega} \mathrm{Ka}_{2}$ values for I-III, i.e., the differences from $\mathrm{pKa}{ }_{2}$ (Tables II and III), was also better by Eq. 2 than Eq. 1 plots ($p<0.13$). The slightly improved linear correlation of the Eq. 2 plot may explain, in part, why it has been advocated instead of Eq. $1(16,18)$. Furthermore, the unreported linear regression data for plots of $p_{s} \mathrm{Ka}_{2}+\log \left[\mathrm{H}_{2} \mathrm{O}\right]$ versus methanol ($\% \mathrm{w} / \mathrm{w}$) were virtually identical with those reported in Table III. This would be expected from the nearly linear relationship expressed by Eq. 6 (31).
Doubts about the accuracy of $\mathrm{p}_{\omega} \mathrm{Ka}$ values extrapolated from aqueous organic solvent mixtures containing $>20 \%$ solvent have been expressed elsewhere (16-20); curves shaped like hockey sticks have resulted from Eq. 1 plots. One contributing cause of this could be plotting erroneous high values of $p_{s} \mathrm{Ka}^{\prime}$ uncorrected for δ (Eq. 3). The value of δ ranged from $0.02-0.12$ in these titrations, increasing with methanol concentration. Failure to have corrected $\mathbf{p}_{s} \mathrm{Ka}^{\prime}$ to $\mathbf{p}_{\delta} \mathrm{Ka}$ values would have caused progressive decreases in the slopes of Eq. 1 plots. The resulting horizontal inclinations, i.e., the hockey stick appearance, at high methanol concentrations would have produced greater inaccuracy in the extrapolated

[^2]

Figure 1-Plot of $p_{\mathrm{s}} K$ a versus methanol ($\% w / w$) for cyclizine (I), chlorcyclizine (II), and hydroxyzine (III). Key: (७) I; (ロ) II; (O) III.
$p_{\omega} \mathrm{Ka}_{2}$ values. Therefore, the I-III $\mathrm{p}_{s} \mathrm{Ka}_{2}$ data were calculated for 37.7% (w / w) \leq methanol $\leq 52.9 \%$ (w / w) and $16.2 \leq 1000 / \epsilon \leq 18.2$ (Table IV). Statistical analysis showed no difference in the accuracy and precision of I-III $\mathrm{p}_{\omega} \mathrm{Ka}_{2}$ values ($p<0.001$) and the linear correlation of Eq. 1 and Eq. 2 plots ($p<0.001$) between the data in Tables II and IV or Tables III and IV. These findings pertain only to I-III under the conditions stated, and they do not warrant general advocation of extrapolating $\mathrm{p}_{\omega} \mathrm{Ka}$ values from $\mathrm{p}_{s} \mathrm{Ka}$ data obtained in $>35 \%$ (w / w) methanol.
A literature search yielded one similar study of some phenothiazine derivatives (33). Those plots were based on fewer data (mostly three points) obtained in a higher methanol concentration range (mostly $\geq 40 \%$) and lacked the statistical data necessary for comparing pKa with $\mathrm{p}_{\omega} \mathrm{Ka}$ values derived from Eqs. 1 and 2. The plots apparently consisted of empirically connecting the sets of coordinates rather than calculating least-squares regression lines (33).
The magnitude of error in calculating the percent of monoprotonated I-III that would result from using $\mathrm{p}_{\boldsymbol{\omega}} \mathrm{K} \mathrm{a}_{2}$ values to estimate otherwise

Figure 2-Plot of $p_{8} \mathrm{Ka}+\log \left[\mathrm{H}_{2} \mathrm{O}\right]$ versus 1000/є for cyclizine (I), chlorcyclizine (II), and hydroxyzine (III). Key: (\bullet I; (ロ) II; (O) III.
unreported pKa_{2} values for I-III was determined for pH 7.4. The error ranged from 0.72% for I (Table III) to 17.70% for II (Table II) (34):

$$
\begin{gather*}
\text { Percent } \mathrm{HB}^{+}=100 /\left[1+10^{\left(\mathrm{pH}-\mathrm{pKa}_{2}\right)}\right] \tag{Eq.7}\\
\text { Percent } \mathrm{HB}_{\omega}^{+}=100 /\left[1+10^{\left(\mathrm{pH}-\mathrm{p}_{\omega} \mathrm{Ka}_{2}\right)}\right] \tag{Eq.8}\\
\text { Error, } \%=\mid \text { Eq. } 7-\text { Eq. } 8 \mid \tag{Eq.9}
\end{gather*}
$$

where HB^{+}is the monoprotonated conjugate acid of I-III. From Eqs. 7 and 8 , as the absolute values of the quantities $\mathrm{pH}-\mathrm{pKa}_{2}$ and $\mathrm{pH}-\mathrm{p}_{\omega} \mathrm{Ka}_{2}$ increase, the value of Eq. 9 decreases.

A specific reason for the differences between $\mathrm{p}_{\omega} \mathrm{Ka}_{2}$ and pKa_{2} values of I-III obtained by either Eq. 1 or Eq. 2 is not readily apparent. The fact that the titrants and I-III solutions were prepared in the same aqueous methanol concentrations, i.e., within $0.1 \%(\mathrm{w} / \mathrm{w})$, precluded stoichiometric errors in precision resulting from the nonadditivity of volumes and negative heats of solution. The variability in solvation phenomena

Table II-Linear Regression Data for Plots of Equation $1^{\text {a }}$

Drug	Equation, $\mathrm{p}_{s} \mathrm{Ka}_{2}{ }^{b}=$	$\mathrm{p}_{\boldsymbol{u}} \mathrm{Ka}_{2}{ }^{c}$	$\mathrm{pKa}_{2}{ }^{d}$	Absolute Value Difference, $\%{ }^{e}$	R^{f}	$S_{y, \boldsymbol{x}}{ }^{\mathrm{g}}$
I	$-0.011 C+8.067$	8.07	8.03	0.50	0.983	0.032
II	$-0.012 C+8.052$	8.05	7.65	5.23	0.95	
III	$-0.006 C+7.332$	7.33	7.40	0.95	0.972	0.023

${ }^{a}$ When $11.5 \%(w / w) \leq$ methanol $\leq 52.9 \%(w / w) .{ }^{b}$ This refers to straight line plots for I-III (Fig. 1) where C is the methanol concentration (\% w/w). ${ }^{c}$ The value of $\mathrm{p}_{\mathrm{s}} \mathrm{Ka}_{2}$ extrapolated to $0 \%(\mathrm{w} / \mathrm{w})$ methanol. ${ }^{d}$ The value of pKa_{2} determined in aqueous solution and corrected for - $\log \gamma_{i}$ (Eq. 4). e Calculated from $\left|\left(\mathrm{pKa}{ }_{2}-\mathrm{p}_{\omega} \mathrm{Ka}_{2}\right)\right|$ ($100 / \mathrm{pKa}_{2}$). ${ }^{f}$ Correlation coefficient. ${ }^{\varepsilon}$ Standard error of the estimate of $\mathrm{p}_{\varepsilon} \mathrm{Ka}_{2}$ based on the methanol concentration.

Table III-Linear Regression Data for Plots of Equation 2^{a}

Drug	Equation, $\mathrm{p}_{s} \mathrm{Ka}_{2}+\log \left[\mathrm{H}_{2} \mathrm{O}\right]^{b}=$	$\mathrm{p}_{\omega} \mathrm{Ka}_{2}{ }^{\text {c }}$	$\mathrm{pKa}_{2}{ }^{\text {d }}$	Absolute Value Difference, \% ${ }^{e}$	R^{\prime}	$S_{y, x^{g}}$
I	$-0.164(1000 / \epsilon)+11.838$	8.01	8.03	0.25	0.997	0.022
II	$-0.164(1000 / \epsilon)+11.785$	7.96	7.65	4.05	0.997	0.019
III	$-0.121(1000 / \epsilon)+10.584$	7.30	7.40	1.35	0.994	0.023

${ }^{a}$ When $14.5 \leq 1000 / \epsilon \leq 18.2$. b This refers to straight line plots for I-III (Fig. 2) where $\left[\mathrm{H}_{2} \mathrm{O}\right]$ and ϵ are the molarity of water and dielectric constant, respectively, of the aqueous methanol solvents. ${ }^{c}$ This is the extrapolated value of $p_{s} \mathrm{Ka}_{2}$ obtained when $\log \left[\mathrm{H}_{2} \mathrm{O}\right]=1.743$, where 55.3 is the molarity of water at 25°, is subtracted from the quantity $\left(\mathrm{p}_{s} \mathrm{Ka}_{2}+\log \left[\mathrm{H}_{2} \mathrm{O}\right]\right)$ when the latter is calculated for $1000 / \epsilon=12.73$ where $\epsilon=78.54$ for water at 25°. ${ }^{d}$ Footnote d, Table II. ${ }^{e}$ Footnote e, Table II. f Footnote f, Table II. 8 Standard error of the estimate of $\mathrm{p}_{s} \mathrm{Ka}_{2}+\log \left[\mathrm{H}_{2} \mathrm{O}\right]$ based on $1000 / \epsilon$ values.

Table IV-Linear Regression Data for Plots of Equations 1 and 2^{a}

Drug	$\mathrm{p}_{\boldsymbol{\omega}} \mathrm{Ka}_{2}$		pKa_{2}	Difference, \% ${ }^{\text {d }}$		R ${ }^{\text {e }}$		$S_{\gamma, x}{ }^{f}$	
	Eq. ${ }^{6}$	Eq. $2^{\text {c }}$		Eq. 1	Eq. 2	Eq. 1	Eq. ${ }^{2}$	Eq. 1	Eq. ${ }^{2}$
I	8.25	8.09	8.03	2.74	0.75	0.971	0.990	0.029	0.027
II	7.97	7.87	7.65	4.18	2.88	0.985	0.997	0.014	0.012
III	7.40	7.32	7.40	0	1.08	0.938	0.977	0.022	0.029

[^3]and electrolytic equilibria of I-III in aqueous methanol solutions may partially account for the discrepancies between the pKa_{2} and $\mathrm{p}_{\omega} \mathrm{Ka}_{2}$ values (16-19, 21, 22, 33). For example, different solvation mechanisms are possible with III than with I or II because the hydroxyethoxyethanol substituent, R_{1} on III, is both a hydrogen bond acceptor and donor. Furthermore, the R_{2} chloro substituent on II would increase its partition coefficient over that of I $(35,36)$. In fact, 0.002 M II was inadequately soluble in $11.5 \%(\mathrm{w} / \mathrm{w})$ methanol while titrating its $\mathrm{p}_{s} \mathrm{Ka}_{2}$, which is attributed to the enhanced hydrophobicity conferred by the chloro group, $\mathrm{R}_{2}(35,36)$. The $\mathrm{p}_{s} K a_{1}$ values of 0.0005 M IV and V were obtainable only in solvents containing $\geq 47.8 \%$ (w / w) methanol. As noted earlier, titration data derived from the latter solutions would be poorly applicable to $\mathbf{p}_{\omega} \mathrm{Ka}_{1}$ estimates (18,21).

Finally, it remains to be determined why the ratios of $K_{a 1} / K_{a 2}$ for I-III show a variation of 2.75×10^{5} to 7.76×10^{5}. The comparable ratio of $K_{a 1} / K_{a 2}$ for piperazine (VI) was reported to be $1.38 \times 10^{4}(37)^{14}$. There are four main types of electrochemical effects that can account for these $K_{a 1} / K_{a 2}$ ratios: (a) mesomerism or resonance in aromatic compounds, (b) inductive effects of substituents in aliphatic and aromatic compounds, (c) field effects such as intramolecular hydrogen bonding, and (d) molecular symmetry or statistical effects (38-42).

Because the piperazine ring is nonaromatic, mesomerism does not explain the observed $K_{a 1} / K_{a 2}$ ratios. Secondly, the inductive effects of the R_{1} and benzhydryl substituents on the piperazine group in I-III account for a maximum difference between $K_{a 1}$ and $K_{a 2}$ of ~ 62 as seen from the quotient of $\left(K_{a 1} / K_{a 2}\right)_{\mathrm{I}} /\left(K_{a 1} / K_{a 2}\right)_{\mathrm{VI}}$. It has been shown that elec-tron-withdrawing $(-I)$ groups have a marginal influence on K_{a} values of acids when the $-I$ and ionogenic groups are separated by more than two $-\mathrm{CH}_{2}$ residues $(38,40)$. These inductive effects account primarily for the differences between either $K_{a 1}$ or $K_{a 2}$ values of I-III. Thirdly, the statistical symmetry factor in VI and its analogs accounts for only a fourfold difference in $K_{a 1}$ and $K_{a 2}$ values (38-40, 42).
Solvent- and space-mediated field effects and inductive forces between nitrogen atoms of the piperazine ring appear to be the most plausible explanation for the large $K_{a 1} / K_{a 2}$ ratios in I-III, VI, and similar compounds. Electrostatic attraction between the protonated and neutral nitrogen atoms of the piperazine ring has been alluded to (43), and it has been studied by conformational analysis using molecular orbital methods. (44). However, field effects mediated through solvent molecules may also contribute to these large observed ratios.

CONCLUSIONS

Aqueous pKa_{1} and pKa_{2} values for I and II, and pKa_{2} for III, apparently heretofore unpublished, were determined. These pKa_{2} values of 1-III were also obtained in aqueous solutions of $11.5-52.9 \%(\mathrm{w} / \mathrm{w})$ methanol. There was no substantial difference in the precision of $\mathrm{p}_{\omega} \mathrm{K}_{2}$ extrapolated from linear regression plots of $p_{s} \mathrm{~K}_{2}$ data according to Eqs. 1 and 2. However, Eq. 2 did yield slightly better correlation of the plotted coordinates. The overall accuracy of $\mathrm{p}_{\omega} \mathrm{Ka}_{2}$ compared to pKa_{2} values for I-III also was better according to Eq. 2 plots ($p<0.13$). The maximum difference observed between any pKa_{2} and $\mathbf{p}_{\omega} \mathrm{Ka}_{2}$ value occurred in the case II using Eq. 1 by which $\mathrm{p}_{\omega} \mathrm{Ka}_{2}$ was 5.23% higher.

The large ratios of $K_{a 1} / K_{a 2}$ for I-III and piperazine are attributed to field effects and intramolecular electrostatic attraction or induction in the piperazine ring.

REFERENCES

(1) R. Baltzly, S. DuBreuil, W. S. Ide, and E. Lorz, J. Org. Chem., 14, 775 (1949).
(2) P. B. Marshall, Br. J. Pharmacol., 10, 270 (1955).
(3) N. G. Lordi and J. E. Christian, J. Am. Pharm. Assoc., Sci. Ed., 45, 300 (1956).
(4) B.-A. Persson, Acta Pharm. Suec., 5, 335 (1968).
(5) A. Pardo, S. Vivas, F. Espana, and J. I. Fernandez-Alonso, Afinidad, 29, 640 (1972).
(6) S. Lukkari, Farm. Aikak., 80, 161 (1971); through Chem. Abstr., 75, 41145t (1971).
(7) J. Tsau and N. DeAngelis, in "Analytical Profiles of Drug Substances," vol. 7, K. Florey, Ed., Academic, New York, N.Y., 1978, p. 325.
(8) B.-A. Persson and G. Schill, Acta Pharm. Suec., 3, 281 (1966).

[^4](9) R. H. Levy and M. Rowland, J. Pharm. Sci., 60, 1155 (1971).
(10) M. Mizutani, Z. Physik. Chem., 116, 350 (1925); through: Chem. Abstr., 19, 3052 (1925).
(11) N. F. Hall and M. R. Sprinkle, J. Am. Chem. Soc., 54, 3469 (1932).
(12) E. B. Leffler, H. M. Spencer, and A. Burger, ibid., 73, 2611 (1951).
(13) P. J. A. W. Demoen, J. Pharm. Sci., 50, 350 (1961).
(14) L. G. Chatten and L. E. Harris, Anal. Chem., 34, 1495 (1962).
(15) E. R. Garrett, J. Pharm. Sci, 52, 797 (1963).
(16) L. Z. Benet and J. E. Goyan, ibid., 56, 665 (1967).
(17) A. Albert and E. P. Serjeant, in "The Determination of Ionization Constants," 2nd ed., Chapman and Hall, London, England, 1971, pp. 39-40.
(18) R. F. Cookson, Chem. Rev., 74, 5 (1974).
(19) T. Shedlovsky, in "Electrolytes," B. Pesce, Ed., Pergammon, New York, N.Y., 1962, pp. 146-151.
(20) M. Yasuda, Bull. Chem. Soc. Japan, 32, 429 (1959); through Chem. Abstr., 54, 2894e (1960).
(21) R. G. Bates, M. Paabo, and R. A. Robinson, J. Phys. Chem., 67, 1833 (1963).
(22) K. C. Ong, R. A. Robinson, and R. G. Bates, Anal. Chem., 36, 1971 (1964).
(23) H. A. Krebs and J. C. Speakman, J. Chem. Soc., 1945, 593.
(24) I. Setnikar, J. Pharm. Sci., 55, 1190 (1966).
(25) C. C. Peck and L. Z. Benet, ibid., 67, 12 (1978).
(26) U. G. Hennig, R. E. Moskalyk, L. G. Chatten, and S. F. Chan, ibid., 70, 317 (1981).
(27) J. Peeters, ibid., 67, 127 (1978).
(28) A. Albert and E. P. Serjeant, in "The Determination of Ionization Constants," 2nd ed., Chapman and Hall, London, England, 1971, pp. 28-32.
(29) P. J. Niebergall, in "Remington's Pharmaceutical Sciences," 16th ed., A. Osol, Ed., Mack Publishing, Easton, Pa., 1980, pp. 228-233.
(30) J. Kielland, J. Am. Chem. Soc., 59, 1675 (1937).
(31) P. S. Albright and L. J. Gosting, ibid., 68, 1061 (1946).
(32) L. K. Randolph and J. L. Ciminera, in "Remington's Pharmaceutical Sciences," 16th ed., A. Osol, Ed., Mack Publishing, Easton, Pa., 1980, pp. 111-114.
(33) A. Hulshoff and J. H. Perrin, Pharm. Acta Helv., 51, 65 (1976).
(34) A. Albert and E. P. Serjeant, in "The Determination of Ionization Constants," 2nd ed., Chapman and Hall, London, England, 1971, p. 104.
(35) A. Leo, C. Hansch, and D. Elkins, Chem. Rev., 71, 525 (1971).
(36) S. H. Yalkowsky, in "Design of Biopharmaceutical Properties through Prodrugs and Analogs," E. B. Roche, Ed., American Pharmaceutical Association, Washington, D.C., 1977, pp. 392, 397, 407.
(37) G. Schwarzenbach, B. Maissen, and H. Ackerman, Helv. Chim. Acta, 35, 2333 (1952); through Chem. Abstr., 47, 4238c (1953).
(38) J. March, in "Advanced Organic Chemistry: Reactions, Mechanisms and Structure," 2nd ed., McGraw-Hill, New York, N.Y., 1977, pp. 238-243.
(39) J. Hine, in "Structural Effects on Equilibria in Organic Chemistry," Wiley, New York, N.Y., 1975, pp. 1-3, 29-53.
(40) R. P. Bell, in "The Proton in Chemistry," 2nd ed., Cornell University, Ithica, N.Y., 1973, pp. 86-102.
(41) E. S. Gould, in "Mechanism and Structure in Organic Chemistry," Holt, Rinehart and Winston, New York, N.Y., 1959, pp. 199-212.
(42) S. W. Benson, J. Am. Chem. Soc., 80, 5151 (1958).
(43) L. L. Ciaccio, S. R. Missan, W. H. McMullen, and T. C. Grenfell, Anal. Chem., 29, 1670 (1957).
(44) W. J. Murray and D. W. Newton, in "Abstracts," vol. 11, no. 1, APhA Academy of Pharmaceutical Sciences, St. Louis, Mo., Mar.-Apr., 1981, p. 100.

ACKNOWLEDGMENTS

Presented to the Medicinal Chemistry and Pharmacognosy Section at the 31st National Meeting of the APhA Academy of Pharmaceutical Sciences, Orlando, Fla., November 16, 1981.

The authors thank the Burroughs Wellcome Co., Pfizer Inc., and ICI Americas Inc. for generous donations of cyclizine and chlorcyclizine hydrochlorides, hydroxyzine and meclizine dihydrochlorides, and buclizine dihydrochloride, respectively. They are grateful to Mrs. Donna Earnshaw for preparing the manuscript and to Donald L. Goode, Pharm.D., for performing many titrations.

[^0]: ${ }^{1}$ The symbol pKa is used throughout in reference to the acid dissociation constant. Formally, K_{a} is the acid dissociation constant for proton loss by neutral and cationic acids or protonated bases, and $\mathrm{pKa}=\log \left(1 / K_{a}\right)$.

[^1]: ${ }^{2}$ The values of $\log \left[\mathrm{H}_{2} \mathrm{O}\right]$ and $1 / \epsilon$ correspond to $\left[\mathrm{H}_{2} \mathrm{O}\right]=55.3 \mathrm{M}$ and $\epsilon=78.54$, respectively, for water at 25°.
 ${ }^{3}$ Lot 9 C 0080 , Burroughs Wellcome Co., Greenville, N.C.
 ${ }^{4}$ Lot 810053 , Burroughs Wellcome Co., Greenville, N.C.
 ${ }^{5}$ Lot 17583-27EA, 99.6\%, Pfizer Inc., Brooklyn, N.Y.
 ${ }^{6}$ Lot 2F268-81EA, 100.0%, Pfizer Inc., Brooklyn, N.Y.
 ${ }^{7}$ Lot AN52650, Stuart Pharmaceuticals, Wilmington, Del.
 ${ }^{8}$ Model 125, Corning Scientific Products, Medfield, Mass.
 9 No. 476050, Corning Scientific Products, Medfield, Mass.
 ${ }^{10}$ Eppendorf Model 4700 , Brinkmann Instruments Inc., Westbury, N.Y.

[^2]: ${ }^{11} \mathrm{~B}, \mathrm{HB}^{+}$, and $\mathrm{H}_{2} \mathrm{~B}^{+2}$ refer to the nonprotonated, monoprotonated, and diprotonated benzhydrylpiperazines, respectively.
 ${ }^{12}$ Values of $\mathrm{pKa}_{1}, \mathrm{pKa}_{2}$, and $\mathrm{p}_{s} \mathrm{Ka}_{2}$ represent the means \pm standard deviations of seven values in each set of ten titrations.
 ${ }_{13}$ The correlation coefficient, R, is 0.9997 .

[^3]: ${ }^{a}$ Where $37.7 \%(\mathrm{w} / \mathrm{w}) \leq$ methanol $\leq 52.9 \%$ (w/w) and $16.2 \leq 1000 / \epsilon \leq 18.2$, respectively, for Eqs. 1 and $2 .{ }^{b}$ Footnote c, Table II. ${ }^{c}$ Footnote c, Table III. ${ }^{d}$ Footnote d, Table II. e Footnote f, Table II. f Footnote g, Table II.

[^4]: ${ }^{14} \mathrm{The} \mathrm{pKa}_{1}$ and $\mathrm{pKa} 2_{2}$ values of VI are 5.68 and 9.82 , respectively (37).

